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MIP, Laboratoire CNRS (UMR 5640), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04, France

Received 7 October 2004; received in revised form 2 June 2005; accepted 15 August 2005
Available online 7 October 2005
Abstract

A numerical scheme for the one-dimensional stationary Schrödinger–Poisson model is described. The scheme is used to
simulate a resonant tunneling diode and provides an important reduction of the simulation time. The improvement is two-
fold. First the grid spacing in the position variable is made coarser by using oscillating interpolation functions derived from
the WKB asymptotics. Then the discretization of the energy variable, which is a parameter for the Schrödinger equation, is
improved by approaching the wavefunctions in the double barrier region by its projection on the resonant states (following
the work of Presilla–Sjöstrand and Jona-Lasinio [On Schrödinger equations with concentrated non-linearities, Ann. Phys.
240 (1995) 1–21]).
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1. Introduction

Over the last years, a wide variety of nanoscale semiconductor structures have been studied both experi-
mentally and theoretically, for their potential application to ultrafast, low consumption and high functionality
devices [19,22,45]. In such devices and at such lengthscales, quantum effects arize and have to be taken into
account in the modelling by means of the Schrödinger equation. The oscillatory behaviour of the solutions
of such an equation induces serious numerical difficulties and various strategies have been recently developed
to reduce the correponding simulation times: reducing the spatial domain of the Schrödinger equation either
by defining artificial boundary conditions [3–5,10] or by coupling the Schrödinger equation to classical models
[9,11,13,20] or increasing the time step by using spectral type methods [7,8]. The large number of Schrödinger
equations to be solved in order to simulate an electronic device as well as the difference of the lengthscales
associated to each of them is another difficulty to be tackled to optimize the simulation codes.
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Indeed, an electronic device is by essence an open system: electrons are injected from a reservoir (the
source), they travel through the active region (channel of a Mosfet, double barrier of a resonant tunneling
diode, etc.) and leave the device towards another reservoir (drain) [24,28,45]. In the reservoirs, scattering
phenomena drive the electron ensemble towards a thermal equilibrium so that electrons are in a mixed state
with the equilibrium statistics of the reservoir. Therefore, macroscopic quantities such as particle density or
current density are computed as an integral over the energy variable of single state quantities [12,14,17,
27,31–33,43].

Numerically, the integral is computed thanks to a suitable numerical integration method. An energy grid
containing a certain amount of points is constructed and the wavefunction for each of these points is
computed by solving the Schrödinger equation [17,27,18,22,41,43,37,39,44,42,29]. Depending on the features
of the device (induced by geometry, lengthscales, resonances, etc.), a refined energy grid might be required for
the simulation to be accurate enough. For instance, a resonant tunneling diode (RTD), which is our bench-
mark in this paper, behaves like a very precise energy filter; electrons having an energy extremely close to
the resonant energy are transmitted from the source to the drain whereas the others are totally reflected back
to the source. The transmission coefficient of the structure, as a function of the energy, has a very sharp peak
at the resonant energy [20,36]. The width and the shape of this peak is of primary importance for computing
the current flowing in the RTD since only transmitted electrons contribute to it. Therefore, a very refined mesh
is needed around such energies resulting in a high computational cost. Consequently, an adequate treatment of
resonances would help reducing the number of energy grid points and thus lowering the simulation time.

A second way to reduce the numerical burden is to allow for coarser space grids for the Schrödinger equa-
tion. For an RTD, and the situation is similar for other devices, the macroscopic quantities like particle
density are relatively smooth functions of the position variable. As mentioned above, they are obtained as
the sum of single state contributions. For high energies, the single states have a small de Broglie length and
oscillate at much smaller space scale. Using the same spatial grid for all the energies to solve the Schrödinger
equations with standard finite element or finite difference methods requires a large number of points and there-
fore increases unnecessarily the numerical cost.

The aim of this paper is to propose a method to reduce the simulation time for an RTD by both reducing
the number of energy and position grid points. Before going into the details, let us recall the mathematical
model to be solved [14].

1.1. The Schrödinger–Poisson problem

The RTD extends on the interval [a,b] which contains the double barriers, the eventual spacers (region I in
Fig. 1) and a small part of highly doped access regions (region II in Fig. 1). The transport is assumed to be
ballistic and one-dimensional. The electrostatic potential is assumed to be constant outside the interval [a,b],
equal to Va at the source contact a and to Vb at the drain contact b. The contacts a, b are linked to electron
reservoirs at thermal equilibrium, injecting electrons with some given profiles ga(p), p P 0, gb(p), p 6 0, where
p is the momentum of the injected electron. The wave function of the electrons injected at x = a with momen-
tum p P 0 satisfies a stationary effective-mass Schrödinger equation with open boundary conditions:
Fig. 1. Schematics of the potential energy in an RTD.
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� �h2

2m
u00

p � qV up ¼ Ea
pup ðp P 0Þ;

�hu0
pðaÞ þ ipupðaÞ ¼ 2ip; �hu0

pðbÞ ¼ ipbupðbÞ;
ð1Þ
where m and q are, respectively, the effective mass (assumed to be constant in the device) and the elementary
(positive) charge of the electron, V is the total electrostatic potential in the device and
pb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2qmðV b � V aÞ

p
; Ea

p ¼
p2

2m
� qV a.
Similarly, electrons injected at x = b with momentum p 6 0 are represented by the wavefunction up satisfying
the equation,
� �h2

2m
u00

p � qV up ¼ Eb
pup ðp 6 0Þ;

�hu0
pðbÞ þ ipupðbÞ ¼ 2ip; �hu0

pðaÞ ¼ ipaupðaÞ;
ð2Þ
where
Eb
p ¼

p2

2m
� qV b; pa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2qmðV a � V bÞ

p
.

The transmission coefficients are defined by
T ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ 2qmðV b � V aÞÞþ

q
jpj jupðbÞj

2 for p > 0; ð3Þ

T ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 � 2qmðV b � V aÞÞþ

q
jpj jupðaÞj

2 for p < 0; ð4Þ
where (a)+ = max(a, 0). The electrons are assumed to be in a mixed state so that the electronic and current
densities are given by
nðxÞ ¼
Z þ1

�1
gðpÞjupðxÞj

2 dp; ð5Þ

J ¼ e
m

Z þ1

�1
gðpÞpT ðpÞ dp; ð6Þ
where g(p): = ga(p) for p > 0, g(p): = gb(p), for p < 0 (ga being the statistics of the electrons injected at x = a).
Typically, g(p) is a Fermi–Dirac integral given by
gðpÞ ¼ mkbT
2p2

log 1þ exp � p2

2m
þ EF

� �� �
kbT

� ��
. ð7Þ
The electrostatic potential V is split into two parts: V = Ve + Vs, where Ve is the external potential (including
double barriers, applied voltage) and Vs is the self-consistent potential modeling the electron–electron inter-
action and satisfies the Poisson equation
d2V s

dx2
ðxÞ ¼ q

e
ðnðxÞ � nDðxÞÞ;

V sðaÞ ¼ V sðbÞ ¼ 0;

ð8Þ
where e is the dielectric constant and nD the doping density.

1.2. Reducing the number of spatial grid points

The first difficulty is related to the Schrödinger equation resolution. In Fig. 2, it can be clearly obser-
ved that the electronic density varies rather smoothly. On the other hand, a single wavefunction strongly
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Fig. 2. Density profile in an RTD: smooth variation.
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oscillates and the frequency depends on the electron energy, see Fig. 3. Consequently, even if the density
seems not to require a refined grid, a small meshsize is needed in order to compute accurately the high
energy wavefunctions.

In order to reduce the number of grid points, we notice that high energy wavefunctions correspond to a
semiclassical regime. The need for a refined spatial grid is due to the linear or polynomial interpolation
underlying the standard finite difference or finite element methods. Therefore, if the oscillation phase is
known accurately, the phase factor could be used to interpolate the nodal values of the wave function
and a coarser grid can be allowed. In the one-dimensional case, this can be done since the WKB asympt-
otics [16] provide us with an explicit formula for this phase factor. Let us mention that in the case of con-
stant potentials, the WKB approach consists in using plane waves as interpolation functions. The idea has
been developed by Ando and Itoh [1], and for the high frequency Helmholtz equation by Abboud et al. [2]
(see also [21]). At the time being, the WKB method is restricted to the one-dimensional case. In two dimen-
sions, the extension of the methods requires the construction of oscillating wave functions on a triangle
which are approximate solutions of the Schrödinger equation. Simple computations for linear potentials
show that the trace of some of these oscillating functions on one edge of the triangle does depend on
the value of the function on the opposite vertex. The globally constructed function on the whold grid, will
then have discontinuities on the edges which induces some difficulties in the definition of a related finite
element scheme. Let us also mention that in two-dimensional applications like the double gate Mosfet
(DGMOS) where there is a direction for transport and a direction for confinement, the two-dimensional
Schrödinger equation is well approached by a one-dimensional non-diagonal Schrödinger system [38] for
which a WKB type approach can be derived (see [15]).
10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

2.5

3

3.5

W
av

ef
un

ct
io

n 
m

od
ul

us

E=0.17eV
E=0.003eV

Fig. 3. A low energy (slowly varying) and a high energy (strongly oscillating) wave functions.
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Fig. 4. Transmission coefficient for an RTD at two different biases.
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1.3. Reducing the number of energy grid points

As can be seen in Fig. 4, the double barrier transmission coefficient presents a very sharp resonance peak
with a very small resonance width, even in logarithmic scale. In [36], an automatic resonance detection
method was used and showed fine results. Nevertheless, for time-dependent problems, since the resonances
move (see Fig. 4), this method is not well suited and introduces an extra numerical cost. In order to deal
with this problem, we define a new method to compute the density by adapting an idea developed by Pre-
silla, Sjöstrand and Jona-Lasinio (the one-mode approximation [26,40]) which first consists in splitting the
wavefunction into an exterior and an interior wavefunction. The exterior one is obtained by solving a mod-
ified Schrödinger equation in which the well inside the double barrier is ‘‘filled’’. The interior wave function
essentially lives in the well between the two barriers. It is well approximated by its projection on the reso-
nant states. In their paper [40], Presilla and Sjöstrand proceed to the exterior–interior decomposition of the
wave function, they approximate the exterior function by its WKB approximation, project the interior on
the resonant states and derive a differential equation on the proportionality coefficient between the interior
solution and the resonant state. By doing so, they reduce the whole Schrödinger system to a finite dimen-
sional differential equation. Of course, the model obtained by Presilla and Sjöstrand is an asymptotic model
(see the thesis of Patel for a rigorous proof [35]). Our goal here is to extract from the approach a numerical
scheme for the whole Schrödinger system. The key idea consists in noticing that the exterior solution does
not exhibit any resonance. Therefore, its dependence with respect to energy is very smooth and does not
require a refined energy grid. Now for the interior part, we still need a refined energy grid. But the gain
here is the reduction to a finite number of unknowns (this number being equal to one in the targeted
application).
1.4. Outline of the paper

The paper is organized as follows: in Section 2, we explain the WKB approach for the resolution of the
Schrödinger equation while Section 3 is devoted to the treatment of the energy variable by the Presilla–
Sjöstrand decomposition. Numerical results and comparisons are then given in Section 4. The expression
of some coefficients of the scheme are given in Appendixes A and B.
2. The WKB-scheme

This section deals with the spatial discretization of the Schrödinger. Consider the following 1D Schrödinger
problem, on the domain [a,b],
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� �h2

2m
u00ðxÞ þ V ðxÞuðxÞ ¼ EuðxÞ; ð9Þ

uðaÞ ¼ ua; u0ðaÞ ¼ u0
a; ð10Þ
where �h is the reduced Planck constant, m is the particle mass, V a given potential and E a given energy. One
has to notice here that the boundary conditions written above can be linked to that of (1) and (2) after easy
manipulations (see [36] for more details). The problem (9) and (10) can be written as a first order ordinary
differential problem
W ¼
u

u0

� �
; W0 ¼

0 1
2m
�h2
ðV � EÞ 0

 !
W; Wð0Þ ¼

ua

u0
a

� �
. ð11Þ
The system (11) can be solved using any numerical scheme like, for instance, the Runge–Kutta method. The
meshsize has of course to be small enough in order to resolve the oscillations of the wave function u. If k is the
de Broglie wavelength of the particle and if Dx is the meshsize, one needs
Dx
k

� 1.
For Dx
k � 1, of course, the standard schemes fail. For a given Dx, this actually happens for sufficiently high

energy wavefunctions. But the high energy regime is the semiclassical one. Therefore, the WKB asymptotics
(see [16]) are valid. This leads, for E > V(x), to the identities
uðxÞ��h!0
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � V ðxÞÞ4
p eiSðxÞ þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � V ðxÞÞ4
p e�iSðxÞ; ð12Þ
where A and B are two constants and S(x) is the dimensionless action,
SðxÞ ¼
ffiffiffiffiffiffi
2m

p

�h

Z x

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðsÞ

p
ds
and x0 is an integration constant. Formula (12) gives the asymptotic behaviour of the wavefunction as ⁄tends
to zero (or E to infinity). This asymptotics has two advantages: it is a good approximation not only at high
frequencies but also for slowly varying potentials. As shown in (12), the wave function is the sum of two terms,
each of them being the product of an oscillatory function and a slowly varying one. There is an analogous
formulation of (12) for E < V(x), classically forbidden energies. For the asymptotic formula (12) to be accu-
rate, one needs the relation
�hmjV 0j
½2mðE � V Þ�3=2

� 1. ð13Þ
Therefore, the asymptotics breaks down close to turning points defined as the set
T ¼ fx 2 ½a; b�; E ¼ V ðxÞg.

Notice that when the potential V is constant, (12) is exact.

2.1. WKB-basis construction

Let (xn)06 n6N be a subdivision of [a,b] such that
x0 ¼ a < x1 < � � � < xn < � � � < xN�1 < xN ¼ b;
and let
In ¼ ½xn; xnþ1�.

The potential V is assumed to be in the space P1 of affine functions, that is to say
V ðxÞ ¼ an þ bnx for x 2 In. ð14Þ
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Let us assume that the nodal values un,un+1 of the wave function u are known. Standard linear interpo-
lation consists in approaching u on the interval In by the affine function which coincides with u at the
nodes xn,xn+1. Of course, the accuracy of the method is directly connected to the variation of u versus
the size of the cell In. In particular, if u is a solution of (9) with a high energy, the linear interpolation
gives inaccurate results on a coarse grid. In order to enhance the accuracy on a coarse grid, we consider
the WKB approximation to construct a new interpolation function. More precisely, the WKB-interpolated
function is given by
~uðxÞ ¼ Anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE � V ðxÞÞ4

p eiSðxÞ þ Bnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE � V ðxÞÞ4

p e�iSðxÞ; x 2 In.
The constants An and Bn are computed by solving to the following 2 · 2 system
un ¼ ~uðxnÞ :¼
Anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � V ðxnÞÞ4
p eiSðxnÞ þ Bnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � V ðxnÞÞ4
p e�iSðxnÞ;

unþ1 ¼ ~uðxnþ1Þ :¼
Anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � V ðxnþ1ÞÞ4
p eiSðxnþ1Þ þ Bnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � V ðxnþ1ÞÞ4
p e�iSðxnþ1Þ.
After some easy algebraic manipulations, it follows readily
~uðxÞ ¼ anðxÞfnðxÞun þ bnðxÞfnþ1ðxÞunþ1; x 2 In; ð15Þ

where an and bn are the so-called WKB-basis functions given by
anðxÞ ¼ � sin Snþ1ðxÞ
sin cn

; bnðxÞ ¼
sin SnðxÞ
sin cn

ð16Þ
with
SnðxÞ ¼
ffiffiffiffiffiffi
2m

p

�h

Z x

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðsÞþ

p
ds; cn ¼

ffiffiffiffiffiffi
2m

p

�h

Z xnþ1

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðsÞþ

p
ds
and fn are amplitude factors given by
fnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðxnÞ
E � V ðxÞ

4

s
.

In the above relations, ffi
þ
p denotes the complex square root with non-negative imaginary part. Since V is in P1,

Sn and cn can be computed explicitly. The expressions are given in Appendix A. Since the functions an and bn
oscillate at a frequency close to that of the wavefunction, it will be seen in the numerical computations that
this method allows to choose a wide meshsize and therefore to decrease the number of points in the grid. Note
also that for the WKB-interpolation function to exists, the phase cn is required to be different of a multiple of
p, otherwise sincn = 0. This is a non-resonance condition, that we shall assume all along the paper.

Remark 2.1. Assume for example that V is constant, E > V and denote k ¼ �hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE�V Þ

p . Then,
anðxÞ ¼
sinðxnþ1 � xÞ=k
sinðxnþ1 � xnÞ=k

; bnðxÞ ¼
sinðx� xnÞ=k

sinðxnþ1 � xnÞ=k
; x 2 In.
In the limit of small meshsizes compared to the wavelength, i.e., (xn+1 � xn)/k � 1, we have the following
asymptotic formulae for an and bn
anðxÞ ’
xnþ1 � x
xnþ1 � xn

; bnðxÞ ’
x� xn

xnþ1 � xn
which are exactly the expressions of the P1 basis functions.

When |E � V(x)| is locally too small, (13) is in general not satisfied. Hence, we define a threshold d up to
which (15) will be used. When |E � V(x)| < d, we distinguish two cases:
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� E � V has a constant sign in In. In this case, we remove the singular prefactor fn(x) in the interpolation
function and still keep the oscillating (or exponentially behaving) factors an and bn. The wave function
is then written under the form
uðxÞ ¼ anðxÞun þ bnðxÞunþ1; x 2 In. ð17Þ

� When E � V crosses zero in In, a turning point, denoted by ~x, belongs to In and the WKB function are no
longer suitable. In this case the Schrödinger equation implies u00ð~xÞ ¼ 0 and then u is almost a linear func-
tion. Therefore, we use a P1 interpolation function u
uðxÞ ¼ unðxÞun þ vnðxÞunþ1; x 2 In ð18Þ

with
unðxÞ ¼ 1� ðx� xnÞ
ðxnþ1 � xnÞ

; vnðxÞ ¼
ðx� xnÞ

ðxnþ1 � xnÞ
.

2.2. Discretization of the Schrödinger equation

Eq. (9) is discretized using a finite volume approach: we integrate it between x
nþ1

2
and x

n�1
2
, where x

n�1
2
¼

1
2
ðxn þ xn�1Þ, which leads to
u0
nþ1

2
� u0

n�1
2
¼ � 2m

�h2

Z x
nþ1

2

x
n�1

2

ðE � V ðxÞÞuðxÞ dx; ð19Þ
where u0
n�1

2

¼ u0ðx
n�1

2
Þ. Projecting u on the different basis (15), (17) and (18) leads to the following three-point

scheme for the Schrödinger equation
unþ1 ¼
1

An
ðBn þ ~Bn�1Þun þ ~Cn�1un�1

� �
; ð20Þ
where the coefficients An;Bn; ~Bn�1; ~Cn�1 are computed exactly and are given in Appendix A. An and Bn are
calculated at the step n while ~Bn�1 and ~Cn�1 at the step n � 1. In the limit Dx � k, the scheme boils down
to the standard finite difference scheme for the Schrödinger equation. The different steps of the algorithm
are summarized in Fig. 5.

3. The Presilla–Sjöstrand decomposition

We define in this section the numerical method allowing the reduction of energy grid points for an RTD.
Such a device is obtained by stacking successive layers of different semiconductors (typically GaAs and GaA-
lAs). This results in an double barrier shaped electrostatic potential energy as shown in Fig. 1. The transmis-
sion coefficient presents sharp peaks at some energies called resonant energies and the double barrier is quasi
opaque for energies different from these resonant energies.
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Presilla, Sjöstrand and Jona-Lasinio [26,40] decomposition consists in splitting the wave function up, solu-
tion of (1), into an exterior part, uext

p , essentially localized outside the barriers and an interior one, uint
p , essen-

tially localized in the well between the two barriers
up ¼ uext
p þ uint

p . ð21Þ
The exterior solution is defined as the solution of
� �h2

2m

d2uext
p

dx2
� qV fillu

ext
p ¼ Ea

pu
ext
p ðp P 0Þ;

�h
duext

p

dx
ðaÞ þ ipuext

p ðaÞ ¼ 2ip; �h
duext

p

dx
ðbÞ ¼ ipbu

ext
p ðbÞ;

ð22Þ
where Vfill is equal to the potential V with a filled well: the well between the two barriers is ‘‘filled’’ so that the
whole zone is replaced by a single thick barrier (see Fig. 6). The interior solution is the solution of the non-
homogeneous Schrödinger equation
� �h2

2m

d2uint
p

dx2
� qV uint

p ¼ Ea
pu

int
p þ qðV fill � V Þuext

p ðp P 0Þ;

�h
duint

p

dx
ðaÞ þ ipuint

p ðaÞ ¼ 0; �h
duint

p

dx
ðbÞ ¼ ipbu

int
p ðbÞ.

ð23Þ
The source term in this equation is localized in the quantum well and has a non-zero contribution to uint
p when

the energy Ea
p is close to resonant energies (see [6,30]) defined as the non-trivial solutions of the eigenvalue

problem
� �h2

2m
e00kðxÞ � qV ðxÞekðxÞ ¼ kekðxÞ; ð24Þ

�he0kðaÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðkþ qV aÞþ

p
ekðaÞ ¼ 0; �he0kðbÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðkþ qV bÞþ

p
ekðbÞ; ð25Þ
where the eigenvalue k = ER � iC/2 has necessary a non-vanishing imaginary part. The eigenfunction ek is of
class L2 on the contour
c :¼ eih�1; 0� þ a1
� �

[ ½a1; b1� [ b1 þ eih½0;þ1½
� �
for h conveniently chosen and satisfies
Z
c
ekðxÞ2 dx ¼ 1;

Z
c
ekðxÞe0kðxÞ dx ¼ 0.
The system (24) and (25) is a non-linear eigenvalue problem which can be solved, as explained later on, by a
perturbative approach.
V

Vfill

Vreso

Fig. 6. ‘‘True’’, ‘‘Filled’’ and ‘‘Resonant’’ potential. The different potentials.
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When the energy is close to one resonant energy, the source term in (23) produces a non-negligible contri-
bution. The solution uint

p is then approximated by a linear combination of the resonant states. The details
explaining why this approximation is accurate can be found in [40]. In the case of an RTD, only the ground
resonant state is significantly populated. Indeed, for energies close to the second resonant energy, the statistics
g(p) (7) is very small, so that there is no contribution of these states to the density or current. Hence, higher
resonant states are neglected and uint

p is assumed to be proportional to the ground state e. The proportionality
coefficient, called the amplitude factor, depends quasi-explicitly on p. One advantage of this decomposition is
that it allows a relatively large energy mesh for the computation of uext

p since there is no resonance to resolve.
On the other hand, the computation of uint

p for which a fine energy grid is required reduces to the computation
of the amplitude factor which is much simpler to perform. In [40], the functions uext

p and e are approximated
by means of WKB expansions and a reduced model for the RTD is obtained with quasi-explicit formula. In
this paper, we do not replace the wavefunctions by their WKB approximation but rather use this approxima-
tion to build an adequate numerical scheme. Let us mention that the rigorous mathematical justification of
this method has been studied by Nier and Patel [34,35].

Computing the resonant states. If k is a real number, then (24) and (25) admits no solutions except the van-
ishing one. Nevertheless, as soon as C > 0, (24) and (25) has several solutions. Let us define the self-adjoint
operatorH ¼ �d2=dx2 � qV reso defined on [c,d], with c 2 [a1,a2], d 2 [b2,b1] equipped with Dirichlet boundary
conditions at c and d and where the potential Vreso is defined by (see Fig. 6),
V reso ¼ 1I½a2;b2�V þ 1I½c;a2�V ðaþ2 Þ þ 1I½b2;d�V ðb�2 Þ.
The potential Vreso is nothing but the potential V with thicker barriers. The such defined operator H admits a
purely discrete real spectrum. It is proven in particular by Nier and Patel, since e decays exponentially in the
barriers, that e is close to the ground state ofH and then the real part of the resonance ER is very well approx-
imated by the value of the first eigenenergy of H. The ground state of H is denoted by ~e and then solves
H~e ¼ ~ER~e;

~eðcÞ ¼ ~eðdÞ ¼ 0.
ð26Þ
The real part ER of k is approximated by ~ER and the value of e inside the well is approximated by ~e.
Following [40], the eigenstate ~e can be now extended outside the double-barrier in order to recover an

approximation of the full eigenstate e:
eðx;CÞ 	
elðx;CÞ for x 2 ½a; a3�;
~eðxÞ for x 2 ½a3; b3�;
erðx;CÞ for x 2 ½b3; b�;

8><
>:
where el(x,C) and eg(x,C) are the left and right extended functions given by
� �h2

2m
e00l � qVe00l ¼ ER � iC=2ð Þel on ½a; a3�;

�he0lðaÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðER � iC=2þ qV aÞþ

p
elðaÞ ¼ 0; elða3Þ ¼ ~eða3Þ;

ð27Þ

� �h2

2m
e00r � qVe00r ¼ ER � iC=2ð Þer on ½b3; b�;

�he0rðbÞ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðER � iC=2þ qV bÞþ

p
erðbÞ ¼ 0; erðb3Þ ¼ ~eðb3Þ.

ð28Þ
The resonance width can now be computed thanks to (24): multiplying (24) by �e, integrating over [a 0,b 0], where
a 0 < a1, b

0 > b1 and taking the imaginary part leads to
C
Z b0

a0
jeðx;CÞj2 dx ¼ �h2

m
Im eðx;CÞe0ðx;CÞ

� �			b0
a0
. ð29Þ
This last equation is non-linear since e(x,C) depends on C through the boundary conditions of (27) and (28)
and the Schrödinger equation. Solving numerically the fully non-linear problem induces extra-numerical
cost and the final computational gain would not be as important as expected. Nevertheless, since in practice
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C/2ER � 1 (typically C/2ER = 1e � 4, this is why the resonance peak is sharp), it can be computed by an
iteration argument. The value C0 defined by
C0

Z b0

a0
jeðx; 0Þj2 dx ¼ �h2

m
Im eðx; 0Þe0ðx; 0Þ

� �			b0
a0
is already a good estimate of C. Nevertheless, it is expected that the electronic density is a OðDCaÞ with a close
to one and where DC is the error made on C. Then, to obtain a refined guess, we iterate once more an write
C1

Z b0

a0
jeðx;C0Þj2 dx ¼

�h2

m
Im eðx;C0Þe0ðx;C0Þ

� �			b0
a0
.

The amplitude factor. We are able now to evaluate the wave function up. The interior wave function uint
p solves

(23), that we recall here
� �h2

2m

d2uint
p

dx2
� qV uint

p ¼ Ea
pu

int
p þ qðV fill � V Þuext

p ðp P 0Þ.
Taking the scalar product of (23) with e leads to the final expression
uint
p ¼ haðpÞeðxÞ ð30Þ
with
haðpÞ ¼ 1

Ea
p � k

q
R b3
a3
ðV fill � V Þuext

p �eðxÞ dxR b3
a3
jeðxÞj2 dx

. ð31Þ
The fast variation of ha(p) near resonances is not induced by the integral
R b3
a3
ðV fill � V Þuext

p �eðxÞ dx which var-
iation with respect to p only requires a coarse energy grid, but rather by the prefactor 1=ðEa

p � kÞ which is
responsible for the well known Lorenzian Shape of the resonance [16,22].

Remark 3.1. Notice that theoretically, following (1) and (22), uint
p solves
�h
duint

p

dx
ðaÞ þ ipuint

p ðaÞ ¼ 0; �h
duint

p

dx
ðbÞ ¼ ipbu

int
p ðbÞ.
But, according to (30), uint
p verifies
�h
duint

p

dx
ðaÞ þ ipuint

p ðaÞ ¼ i p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðkþ qV aÞþ

p� �
uint

p ðaÞ;

�h
duint

p

dx
ðbÞ � ipbu

int
p ðbÞ ¼ �i pb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mkþ qV bÞþ

p� �
uint

p ðbÞ.
These conditions are equivalent in practice since the r.h.s. of the above equalities almost vanish for two rea-
sons. First, neglecting C, if p2 	 2m(ER + qVa), then p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðER þ qV aÞþ

p
	 0 and pb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðER þ qV bÞþ

p
	 0

and also if p2 6¼ 2m(ER + qVa), then according to (30), uint
p is small. Second, since e decays exponentially in the

barriers, it is expected that e(a) and e(b) are extremely small.

For p negative, we obtain analogously
� �h2

2m

d2uext
p

dx2
� qV fillu

ext
p ¼ Eb

pu
ext
p ðp 6 0Þ;

�h
duext

p

dx
ðbÞ þ ipuext

p ðbÞ ¼ 2ip; �h
duext

p

dx
ðaÞ ¼ �ipau

ext
p ðaÞ
for the driving term and
hbðpÞ ¼ 1

Eb
p � k

q
R b3
a3
ðV fill � V Þuext

p �eðxÞ dxR b3
a3
jeðxÞj2 dx

; uint
p ¼ hbðpÞeðxÞ.
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3.1. Numerical procedure

The successive steps of the computation of the density n and their numerical resolution are summarized
below.

All the potentials are discretized in the space P1 on a mesh (xn)06 n6N.

Operations independent of p

� Step 1: computation of ER and ~e. Since the minimal meshsize of the mesh (xn)06 n6N is relatively large, a
multigrid method is used: the mesh is refined by dividing each cell by into equally sized NGR cells. Eq. (26) is
solved after a discretization of ~e in P1 on the new mesh. This leads to a generalized eigenvalue problem
solved with the inverse power method after a tridiagonal Househölder reduction [23].

� Step 2: computation of C and e. Eqs. (28) and (27) are solved using the WKB-scheme and then the solution
are connected to ~e in order to form e. C is calculated thanks to Eq. (29).

Operations depending on p

� Step 3: computation of uext
p . The WKB-scheme is used to solve (22), see [36] for the treatment of the open

boundary conditions.
� Step 4: computation of uint

p . h(p) is calculated thanks to uext
p , k, e and Eq. (31).

� Final step : computation of n. n is given by formula (5). The integration with respect to p is performed with
the following method. Let r a given threshold. If |p2 � qVa � ER| > r, the energy meshsize is chosen to be
equal to DEmax. On the other hand, if |p2 � qVa � ER| < r, the meshsize is DEmin (see Fig. 7). Contrary to
the adaptative method used in [36], DEmax is close to D Emin and then the number of points in the grid is
reduced. Nevertheless, in the domain |p2 � qVa � ER| < r, one needs a very refined energy grid in order to
compute ha(p) from (31). Hence, between two energy grid points, uext

p is linearly interpolated with respect to
p in Ninterp points.

4. Numerical results

In this section, we show the efficiency of the approaches explained in Section 2 and 3, some numerical re-
sults illustrating the two methods are presented for the resonant tunneling diode. First, we concentrate on the
WKB-scheme for linear Schrödinger equation. Second, the Presilla–Sjöstrand decomposition is tested in a



Table 1
RTD parameters

a a1 a2 a3 b3 b2 b1 b meff V1

0 nm 50 nm 60 nm 65 nm 70 nm 75 nm 85 nm 1350 nm 0.067me �0.3 V
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linear situation and then in the self-consistent case. All along the numerical investigations, the RTD has the
parameters used in [36], see Table 1.

Within this section, RK refers to the fourth-order Runge–Kutta method. In order to compare precisely the
various methods, the used mesh for RK is the same as the one used for WKB-scheme. Nevertheless, since RK
needs more points to give accurate results, the RK spatial grid is obtained from the WKB grid by splitting
each WKB cell into several equally sized small cells.

4.1. Validation of the WKB-scheme

The WKB-scheme efficiency is first evaluated in a simple case where analytic expressions are available. This
case corresponds to a double-barrier heterostructure under a zero bias. In a second time, the scheme is tested
on a double-barrier under a non-zero bias. An electrostatic potential is added in order to introduce turning
points in the simulation. The WKB-scheme is always compared to RK. The value of the threshold d is set
at 0.08 eV.

4.1.1. A simple case
The problem (1) can be solved analytically assuming that no bias is applied to the structure (see Fig 1) with

DV = 0. Indeed, since in this case V is piecewise constant, the Schrödinger equation can be explicitly solved
and the continuity of the wavefunction and its derivative define an 8 · 8 linear system. Two different energies
are considered: one very close to the double-barrier first resonant energy and the other far from this value. The
results are presented in Figs. 9 and 8.

At the resonant energy (Fig. 8), Ea
p ¼ 0:08958 eV and the WKB mesh contains 13 points. The relative l2 error

at the nodal points between the exact solution and the one obtained thanks to the WKB-scheme is about
4 · 10�12%. With a 15 times finer grid (193 nodes), the RK method has a computational cost 11 times higher
than WKB and produces an l2 error of the order of 2.5%. With a 10 times finer grid instead, the error rises to
11% with a computational cost 5 times greater than the WKB one.

For an energy Ea
p ¼ 0:046072 eV (Fig. 9), the wavelength is larger and the efficiency is expected to be less

important. In this case the WKB mesh contains 15 points and the relative node error is 2.2 · 10�13%. For
RK, on 5 times finer grid, the node error is 1.5% with a time cost only 3.3 times higher. With a 2 times finer
grid, the error is 16% and the time cost is twice higher. The results are summarized in Table 2.
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Fig. 8. Comparison Exact-WKB-RK: resonant case with 15 points added.
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Fig. 9. Comparison Exact-WKB-RK: non-resonant case.

Table 2
Results for the linear case

N Error Time N Error Time

E = 0.08958 eV E = 0.046072 eV
WKB 13 4 · 10�14 1 15 2.2 · 10�15 1

RK 133 0.11 5 45 0.16 2
193 0.025 11 85 0.015 3.3
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4.1.2. A case with turning points

A bias of 0.08 V is now applied at the edges of the device, and no explicit formula is provided for the solu-
tion. An electrostatic potential is added in order to introduce turning points in the simulation. This potential is
actually the self-consistent potential obtained by coupling to the Poisson equation. As reference, the solution
obtained thanks to RK with a mesh containing a very high number of points is taken (1024). This solution is
then compared to WKB and RK with less points.

For a small energy of 0.0039 eV, the error is 0.64% for WKB on a 34 points grid. It is and 5e-3% for RK on
a 6 times finer grid (232 points), see Fig. 10. RK simulation is twice longer than WKB with such parameters.

For a higher energy with E = 0.17 eV, and afterwards without turning points (Fig. 11), the WKB error is
0.1% while the RK error is 1.1 % with an 8 times finer grid (298 points). In this case, WKB is about 3 times
faster. The results are summarized in Table 3.
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Fig. 10. Comparison Reference-WKB-RK: small energy case with turning points.
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Fig. 11. Comparison Reference-WKB-RK: high energy case.

Table 3
Results for the linear case with turning points

N Error Time N Error Time

E = 0.0039 eV E = 0.17 eV
WKB 34 0.0064 1 34 0.001 1
RK 232 5e � 5 2 298 0.011 3
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For an energy of 0.059 eV, in order have a comparison with the reference solution, the wavefunction is eval-
uated at the reference mesh points thanks to the WKB basis functions. In Fig. 12, the reference and the WKB-
interpolated function are almost undistinguishable and the global L2 error between them is 1.6%.

The scheme was also tested in a physically non-relevant case with a very high energy in order to have a
meshsize large compared to the wavelength. For an energy of 1.11 eV, the computed wavefunction is repre-
sented in Fig. 13 and the obtained error is about 0.81% compared to the same reference as above.

4.2. Validation of the one-mode approximation

In this section, the Presilla–Sjöstrand approach is illustrated on two examples. The first one corresponds to
Section 4.1.1 where exact solutions are available. The second one is the fully non-linear RTD model. In both
cases, the electronic density is computed thanks to (5) and after an integration between �kmax and kmax. For
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Fig. 12. WKB-Interpolated low energy wavefunction.
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convenience, the wave vector k (defined as k ¼
ffiffiffiffiffiffiffiffiffi
2mE

p
=�h) is used instead of the energy E. The quantities Dkmax,

Dkmin and r, respectively, denote the maximal, the minimal meshsize and the threshold for the one-mode
approximation (see Section 3.1).

Both examples share the parameters presented in Table 4.
4.2.1. A linear case

We consider the configuration of Section 4.1.1 where exact solutions are provided. The exact expressions of
the density is compared to the results given by the one-mode approximation and the method used in [36]. The
latter consists in solving the Schrödinger equations for a both side injection with RK and in adaptating the
energy meshsize thanks to the slope of the logarithm of the transmission coefficient. The results are presented
in Figs. 14 and 15. The used grid contains 19 points for WKB and is 6 times finer for RK. For almost the same
error 0.1 % and 0.12 %, RK is about 6 times longer.

Between two WKB grid points, the density can be computed either by linearly interpolating the nodal val-
ues, or by WKB-interpolating the wave functions and then superposing their contribution to reconstruct the
density. The results are similar with a discrepancy of 0.1%.

In Fig. 16, the interior wave function, defined by up � uext
p , is represented for several energies close to the

resonant one. It can be observed that the wave functions have globally the same shape modulated by an ampli-
tude factor depending on the energy. To check more accurately the validity of the one-mode approximation,
we have the quantity
Table
Param

T

300 K
Q ¼
jhup � uext

p ; eij
kup � uext

p kL2kekL2
where ÆÆ,Ææ denotes the L2 inner product. When Q is equal to one, this expresses that up � uext
p ¼ hðpÞeðxÞ and

thus one-mode approximation is exact. In Fig. 17, one can observe that Q is close to one up to errors of about
5% for small energies. When the energy is close to the resonant energy of the double barrier, it is expected that
Q is very close to 1 and this precisely what is shown in the figure. For higher energies, the approximation nat-
urally breaks down since only the first resonant state has been taken into account and thus Q tends to zero. We
have also represented the quantity kup � uext

p k as a function of E, normalized such that maxEkup � uext
p k ¼ 1.
4
eters for density computation

n1d n2d kmax NGR r Dkmax Dkmin Ninterp

1 · 1024 m�3 1 · 1021 m�3 0.0626 Å�1 3 0.0026 Å�1 0.0008 Å�1 0.0016 Å�1 15
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In the one-mode approximation, it is expected that up � uext
p 	 hðpÞeðxÞ only for the energies such that

kup � uext
p k is large (when kup � uext

p k is small, this is a non-resonant case and thus up 	 uext
p ). This is exacly

what shows up in Fig. 17: the support of kup � uext
p k is mainly localized in the region Q 	 1.



Fig. 17. Coefficient Q and normalized kup � uext
p k.
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4.2.2. The fully non-linear problem

The self-consistent potential is computed thanks to the Gummel iterations [25], see [36] for more details. In
order to compare precisely the methods, the mesh used for WKB being too coarse, the resolution of the Pois-
son equation is done on a refined (6 times finer here) grid with a linearly interpolated density between the
WKB grid points. We took as a reference potential and density, the solution given by the method of [36] with
an extremely refined mesh is chosen (1024). The results are shown in Figs. 18 and 19. The WKB grid has 34
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Fig. 18. Comparison Reference-WKB-RK: density for the fully non-linear case.
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Table 5
Results for the fully non-linear problem

Linear Non-linear

N Error Time N Error Time

WKB + one mode 19 0.0010 1 34 0.0030 1
RK + adaptative 232 0.0012 6 265 0.0040 5.5
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Fig. 20. Comparison of the I–V characteristics of a resonant tunneling diode.
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points and the RK grid is 7 times finer. For almost the same error 0.3% and 0.4%, RK is about 5.5 times longer.
The comparison of the methods is summarized in Table 5.

I–V characteristics. The current is computed thanks to (6). The obtained curves are shown in Fig. 20 and
the combination of WKB-scheme and the one-mode approximation is about 5.4 faster than RK with the adap-
tative scheme. Notice that the curve obtained with the new method is under the one given by the method of
[36] and is thus less accurate. At the peak location, there is discrepancy of about 10% between the two curves.
The discrepancy between these curves relatively and the reference solution is of the same order of magnitude.
Such differences can be explained by the fact that the current is a difference of two high quantities. Therefore, a
small relative error on each of these high values may result in a bigger error on the difference. This is not the
case for the density where the contributions add up instead of cancelling.

5. Conclusion

Two methods were introduced to accelerate the simulations of 1D stationary quantum transport in hetero-
structures. The numerical experiments showed the efficiency of the WKB-scheme and the Sjöstrand–Presilla
one-mode approximation. The convergence analysis of the methods, in particular the unconditional conver-
gence of the WKB method, is not performed in this paper and is postponed to a forthcoming work.

A natural extension concerns transient simulations. In the stationary picture, even using standard methods,
the time cost is not that important since the structure is one-dimensional. In the time-dependent case, the sim-
ulation time is much more important because of two factors: the motion of the resonance when the applied
bias changes and also the limitation to small time steps in order to avoid oscillations appearing at the bound-
aries. As long as the projection on the resonant modes is concerned, we would like to point out that the
decomposition method due to Presilla and Sjöstrand and that we adapt here for numerical purposes is by
no means restricted to the one-dimensional case. In two or three dimensions, potential applications are single
electron memories which consist in quantum dots imbedded into barriers which exhibit the same feature as the
double barrier. Here the number of resonances is potentially more than only one. Another potential applica-
tion concerns the DG Mosfets with imbedded perpendicular oxide barriers in the channel. In this case, the
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exterior wave functions have essentially a one-dimensional behaviour whereas the resonances are purely bidi-
mensional. Further investigations on these topics are ongoing.
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Appendix A. Expressions of the coefficients of the WKB-scheme

We recall first that
In ¼ ½xn; xnþ1�; T ¼ x 2 ½a; b�;E ¼ V ðxÞf g.
We have
An ¼

� if In \T ¼ ;;
fnþ1ðxnþ1

2
Þb0

nðxnþ1
2
Þ þ f 0

nþ1ðxnþ1
2
Þbnðxnþ1

2
Þ þ Inðfnþ1bnÞ if jE � V ðxÞj > d;

b0
nðxnþ1

2
Þ þ InðbnÞ if jE � V ðxÞj < d;

� if In \T 6¼ ;;
v0nðxnþ1

2
Þ þ InðvnÞ

8>>>>>>><
>>>>>>>:

Bn ¼

� if In \T ¼ ;;
�fnðxnþ1

2
Þa0nðxnþ1

2
Þ � f 0

nðxnþ1
2
Þanðxnþ1

2
Þ � InðfnanÞ if jE � V ðxÞj > d;

�a0nðxnþ1
2
Þ � InðanÞ if jE � V ðxÞj < d;

� if In \T 6¼ ;;
�u0nðxnþ1

2
Þ � InðunÞ

8>>>>>>><
>>>>>>>:

~Bn�1 ¼

� if In�1 \T ¼ ;;
fnðxn�1

2
Þb0

n�1ðxn�1
2
Þ þ f 0

nðxn�1
2
Þbn�1ðxn�1

2
Þ � ~In�1ðfnbn�1Þ if jE � V ðxÞj > d;

b0
nðxn�1

2
Þ � ~In�1ðbnÞ if jE � V ðxÞj < d;

� if In�1 \T 6¼ ;;
v0n�1ðxn�1

2
Þ � ~In�1ðvn�1Þ

8>>>>>>>><
>>>>>>>>:

~Cn�1 ¼

� if In�1 \T ¼ ;;
fn�1ðxn�1

2
Þa0n�1ðxn�1

2
Þ þ f 0

n�1ðxn�1
2
Þan�1ðxn�1

2
Þ � ~In�1ðfn�1an�1Þ if jE � V ðxÞj > d;

a0nðxn�1
2
Þ � ~In�1ðan�1Þ if jE � V ðxÞj < d;

� if In�1 \T 6¼ ;;
u0n�1ðxn�1

2
Þ � ~In�1ðun�1Þ.

8>>>>>>>>><
>>>>>>>>>:
where
InðgÞ ¼
2m

�h2

Z x
nþ1

2

xn

ðE � V ðxÞÞgðxÞ dx; ~In�1ðgÞ ¼
2m

�h2

Z xn

x
n�1

2

ðE � V ðxÞÞgðxÞ dx.
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The expressions of the derivative appearing in these formula are given by, for x 2 In,
a0nðxÞ ¼ �
ffiffiffiffiffiffi
2m

p

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðxÞþ

p cos Snþ1ðxÞ
sin cn

;

b0
nðxÞ ¼

ffiffiffiffiffiffi
2m

p

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðxÞþ

p cos SnðxÞ
sin cn

;

f 0
nðxÞ ¼

V 0ðxÞ
4

ðE � V ðxnÞÞ1=4

ðE � V ðxÞÞ5=4
;

where
SnðxÞ ¼
ffiffiffiffiffiffi
2m

p

�h

Z x

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðsÞþ

p
ds; cn ¼

ffiffiffiffiffiffi
2m

p

�h

Z xnþ1

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðsÞþ

p
ds
Appendix B. Computation of the integrals In and ~In

B.1. Case V constant in In

ffiffiffiffiffiffip � �

InðanÞ ¼

2m
�h sin cn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vþ

p
cos Snþ1ðxnþ1

2
Þ � cos cn ;

InðbnÞ ¼
ffiffiffiffiffiffi
2m

p

�h sin cn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vþ

p
1� cos Snðxnþ1

2
Þ

� �
;

~InðanÞ ¼
ffiffiffiffiffiffi
2m

p

�h sin cn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vþ

p
1� cos Snþ1ðxnþ1

2
Þ

� �
;

~InðbnÞ ¼
ffiffiffiffiffiffi
2m

p

�h sin cn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vþ

p
cos Snðxnþ1

2
Þ � cos cn

� �
;

SnðxÞ ¼
ffiffiffiffiffiffi
2m

p

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vþ

p
ðx� xnÞ;

cn ¼
ffiffiffiffiffiffi
2m

p

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vþ

p
ðxnþ1 � xnÞ.
B.2. Case V non-constant in In

The integrals InðfnanÞ; Inðfnþ1bnÞ;~InðfnanÞ and ~Inðfnþ1bnÞ share all the same structure and consequently we
will focus mainly on In(fn + 1bn). We have
Inðfnþ1bnÞ ¼
2mðE � V ðxnþ1ÞÞ1=4

�h2 sin cn

Z x
nþ1

2

xn

ðE � V ðxÞÞ3=4 sin SnðxÞ dx
which cannot be computed analytically. Thus, we make the following approximation, for any x0n 2 In,
ðE � V ðxÞÞ3=4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðxÞþ

p

 ðE � V ðxÞÞ1=4

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðxÞþ

p
ðE � V ðx0nÞÞ

1=4 1þ O
V 0ðx0nÞ

4ðE � V ðx0nÞÞ
ðxnþ1 � xnÞ

� �
 �
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and then
Inðfnþ1bnÞ 	
2mðE � V ðxnþ1ÞÞ1=4ðE � V ðx0nÞÞ

1=4

�h2 sin cn

Z x
nþ1

2

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V ðxÞþ

p
sin SnðxÞ dx

	
ffiffiffiffiffiffi
2m

p
ðE � V ðxnþ1ÞÞ1=4ðE � V ðx0nÞÞ

1=4

�h sin cn

Z Snðxnþ1
2
Þ

SnðxnÞ
sin S dS

	
ffiffiffiffiffiffi
2m

p
ðE � V ðxnþ1ÞÞ1=4ðE � V ðx0nÞÞ

1=4

�h sin cn
cos SnðxnÞ � cos Snðxnþ1

2
Þ

� �
;

where, if V = an + bnx in In,
SnðxÞ ¼
ffiffiffiffiffiffi
2m

p

�h

Z x

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � an � bns

þ
p

ds ¼ 2
ffiffiffiffiffiffi
2m

p

3�hbn
½ðE � an � bnxnÞ3=2 � ðE � an � bnxÞ3=2�.
In the same way, we obtain
InðfnanÞ 	
ffiffiffiffiffiffi
2m

p
ðE � V ðxnÞÞ1=4ðE � V ðx0nÞÞ

1=4

�h sin cn
cos Snþ1 xnþ1

2

� �
� cos cn

� �
;

~InðfnanÞ 	
ffiffiffiffiffiffi
2m

p
ðE � V ðxnÞÞ1=4ðE � V ðx0nÞÞ

1=4

�h sin cn
1� cos Snþ1 xnþ1

2

� �� �
;

~Inðfnþ1bnÞ 	
ffiffiffiffiffiffi
2m

p
ðE � V ðxnþ1ÞÞ1=4ðE � V ðx0nÞÞ

1=4

�h sin cn
cos Sn xnþ1

2

� �
� cos cn

� �
.

The expressions of In(un) and In(vn) are easily calculated since the integrands are polynomials. One obtains
InðvnÞ ¼
2m

�h2
bn

xn
2

x2nþ1
2
� x2n

� �
� 1

3
x3nþ1

2
� x3n

� �� �
þ E � an

2
xnþ1

2
� xn

� �2
 ��
ðxnþ1 � xnÞ;

InðunÞ ¼
2m

�h2
ðE � anÞðxnþ1 � xnÞ �

bn
2

x2nþ1
2
� x2n

� �
 �
� InðvnÞ.
In the same manner, for ~In�1ðun�1Þ and ~In�1ðvn�1Þ, we have
~In�1ðvn�1Þ ¼
2m

�h2
bn�1

xn�1

2
x2n � x2n�1

2

� �
� 1

3
x3n � x3n�1

2

� �� �


þE � an�1

2
xn � xn�1ð Þ2 � xn�1

2
� xn�1

� �2� ���
ðxn � xn�1Þ;

~In�1ðun�1Þ ¼ðE � an�1Þðxn � xn�1
2
Þ � bn�1

2
x2n�1 � x2n�1

2

� �
� ~In�1ðvn�1Þ.
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